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Brief overview of SArTagnan

SArTagnan is a new parallel SAT-solver that runs different algorithms and
search strategies on different threads. The solver is implemented in C++
using OpenMP and was submitted as 64-bit binary version.

Clause sharing All threads are allowed to share clauses [3, 14, 7] logically
and physically. However, the set of clauses of different threads may differ and
not all clauses have to be shared. One criterion to decide on which clauses to
share is the LBD value [1]. All sharing is generally realised without mutex
locks of the operating system.

Different strategies Most threads use CDCL [11] with the VSIDS heuris-
tic [12] for variables [4], Luby restarts [10] and phase-saving [13]. However,
three threads use geometric restarts and one thread uses activity values for
literals as in the original VSIDS heuristic [12]. Most threads apply lazy
hyper binary resolution as proposed in [2].

Sharing clauses physically allows for easily sharing different kinds of in-
formation among several threads. E.g. if one thread detects a clause for “on
the fly improvement” [8] all threads may profit from this immediately. In
this spirit two threads (when run with 8 threads) mainly attempt to improve
the clause set for the other solvers:
One thread uses reference points for decision making (DMRP) as proposed
in [5, 6] and similar to [9]. It frequently computes a reference point which
attempts to reflect the search direction of several solvers: This is done by
choosing the predominant assignment values of all solvers for the reference
point. Subsequently the DMRP thread focuses on the set of clauses that are
not fulfilled by this reference point. Considering these clauses for decision
making often allows for learning valuable lemmata.
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Another thread tries to simplify the clause database by eliminating or re-
placing variables. It also performs subsumption and backward subsumption
checks and searches for autarkies.
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